РОЖДЕНИЕ СЛОЖНОСТИ

Аннотация: Эволюционная биология и в 21 веке хранит много загадок и тайн, к разгадке которых прикоснутся читатели этой книги. Как возможно, чтоб неразумные микробы шли на самопожертвование, тогда как их генетические «братья» способны этим цинично пользоваться? Почему симбиоз простейших существ породил сложные и разнообразные формы жизни? Зачем динозавры отращивали перья, а мелкие и невзрачные млекопитающие мезозоя в это время копили генетический потенциал, чтобы стать «венцом эволюции»? Как и для чего биологи работают с «генетическим конструктором»? Эта книга – ключ к пониманию жизни, работа, обобщающая многовековые научные изыскания человечества.

Выдержки из книги.
Объем текста ориентировочно – 15 страниц А4 13 шрифтом

Академик С. В. Шестаков, заведующий кафедрой генетики биологического факультета МГУ, недавно рассказывал на одном из семинаров, как его студенты провели мини-опрос общественного мнения по поводу генно-модифицированных продуктов. По словам академика, один из самых распространенных ответов был таким: "Генно-модифицированные продукты очень опасны и должны быть запрещены. Ведь в них есть гены!"

Конечно, можно отделаться снисходительной усмешкой: мы-то с вами, дорогие читатели, прекрасно знаем, что генов полным-полно почти во всех пищевых продуктах, кроме разве что соли, сахара, соды и тому подобных очищенных химических веществ. Но, однако, отсутствие у многих людей элементарной биологической грамотности вовсе не так безобидно. Ведь в современном демократическом обществе право голоса имеет каждый, вне зависимости от уровня образования.

Некоторые детские предрассудки оказываются настолько неистребимыми, что даже школьное образование не может их преодолеть. Например, многие студенты американских колледжей полагают, что шарик, выкатившийся из кривой трубки, будет продолжать двигаться по искривленной траектории.

 

 

 

специальное исследование показало твердую убежденность четырехлетних детей в том, что все на свете существует "для чего-то" (львы — чтобы смотреть на них в зоопарке, тучи — чтобы шел дождик). Специальные исследования также подтвердили склонность детей к креационистскому объяснению происхождения объектов окружающего мира (все вокруг кем-то сделано с какой-то целью).

В другом американском исследовании людям предложили оценить различные политические программы, о которых испытуемым сообщили, что они исходят от той или иной политической партии (республиканцев или демократов). Испытуемые дали программам с виду вполне осмысленные, аргументированные оценки. Однако статистический анализ показал, что в действительности оценки определялись не содержанием программы и не личным отношением человека к каким-то конкретным законам или действиям правительства, а исключительно "партийной принадлежностью". Например, сторонники демократов поддерживали и совершенно "недемократические" проекты, если им говорили, что проект исходит от их любимой партии.

Кроме того, дети гораздо охотнее верят тому "источнику знаний", который демонстрирует полную уверенность в себе и своих словах. Мямли-ученые с их вечными сомнениями и фразами типа "разумеется, пока это лишь предположение..." никакого доверия у детей не вызывают. В связи с этим нельзя не отдать должное дальновидности российских наукоборцев, которые мечтают в учебниках биологии после каждой главы добавить сносочку о том, что "есть, однако, и другая точка зрения..." и вдобавок ввести в школах изучение религиозной картины мира. Конечно, учитель биологии, опутанный "сносочками", не сможет так же уверенно изложить тему, как преподаватель "альтернативного предмета". Кому из них поверят дети, сомневаться не приходится.

Как сказал один из крупнейших биологов-теоретиков XX века Феодосий Григорьевич Добржанский (1900-1975), "ничто в биологии не имеет смысла иначе как в свете эволюции". "Nothing in biology makes sense except in the light of evolution" — так было озаглавлено его эссе, опубликованное в 1973 г. (American Biology Teacher. 1973. V. 35. P. 125-129.http://en.wikipedia.org/wiki/Nothing_in_Biology_Makes_Sense_Except_in_the_Light_of_EvolutionМежду прочим, Добржанский, в 1927 году эмигрировавший в США, был верующим человеком (православным), регулярно ходил в церковь, причащался, постился и прочее. Что опровергает утверждение о том, что эволюционное учение якобы несовместимо с религией. Просто нужно держать науку и религию на разных "полочках" в голове: наука — тут, а религия — там. Это не очень легко, но у многих получается. Пример Добржанского далеко не единичен.).

Бактерия Bacillus subtilis  — широко распространенный почвенный микроб, относящийся к числу наиболее изученных. Геном "тонкой бациллы" (так переводится с латыни название этого микроорганизма) прочтен еще в 1997 году, и функции большинства генов в общих чертах известны.

Этого, однако, недостаточно, чтобы понять механизмы, управляющие сложным поведением бациллы. Этот микроб, например, умеет при необходимости отращивать жгутики и приобретать подвижность; собираться в "стаи", в которых передвижение микробов становится согласованным; принимать "решения" на основе химических сигналов, получаемых от сородичей. При этом используется особое "чувство кворума" — нечто вроде химического голосования, когда определенное критическое число поданных сородичами химических "голосов" меняет поведение бактерий. Мало того, В. Subtilis способна собираться в многоклеточные агрегаты, по сложности своей структуры приближающиеся к многоклеточному организму.

 В критической ситуации (например, при длительном голодании) бациллы превращаются в споры, устойчивые к неблагоприятным воздействиям, чтобы дождаться лучших времен. Но превращение в спору для В. subtilis — процесс дорогостоящий, требующий активизации около 500 генов, и эта мера приберегается на самый крайний случай. Ну а в качестве предпоследней меры в голодные времена микроб прибегает к убийству своих сородичей и каннибализму. Если, конечно, сородичей вокруг достаточно много, то есть плотность популяции высока. Если нет, тогда делать нечего, приходится превращаться в споры натощак.

 Ученые выяснили, что при голодании у В. subtilis срабатывает особый генный переключатель, который может находиться лишь в одном из двух дискретных состояний (включено/выключено). "Переключатель" состоит из ключевого гена-регулятора SpooA и нескольких других генов, которые взаимно активируют друг друга по принципу положительной обратной связи.

Активизация SpooA приводит к целому каскаду реакций, в том числе к производству клеткой токсина SdpC, убивающего тех бацилл, у которых "переключатель" выключен. Однако хитрость состоит в том, что голодание приводит к активизации SpooA только у половины микробов. Погибшие клетки распадаются, высвободившиеся из них органические вещества всасываются убийцами. Если никаких перемен к лучшему так и не произойдет, они, по крайней мере, будут превращаться в споры сытыми.

…Самым интересным тут является даже не каннибализм бацилл-убийц, а альтруизм бацилл-жертв, которые отключают себе все, что только можно, лишь бы помочь своим сородичам себя съесть.

Казалось бы, естественный отбор должен способствовать закреплению в потомстве признака "SpooA включается при голодании" и отбраковывать особей с противоположным признаком. Действительно, ведь первые выживают и оставляют потомство, а вторые погибают, и так раз за разом, при каждой очередной голодовке. Однако генный "переключатель" упорно остается настроенным так, чтобы включаться при голодовке только в 50% случаев. Ведь если все особи в популяции захотят стать каннибалами, а жертвами — никто, то все мероприятие потеряет смысл, есть будет некого. Интересы общества оказываются выше личных, и каннибализм одних расцветает лишь благодаря альтруизму других. 

Важность сделанного цианобактериями "открытия" трудно переоценить. Без цианобактерий не было бы и растений, ведь растительная клетка — результат симбиоза нефотосинтезирующего (гетеротрофного) одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл — пластид, которые суть не что иное, как симбиотические цианобактерии.  

Рост разнообразия семейств морских (слева) и континентальных (справа) животных и растений в течение фанерозойского периода  (последние 542 млн лет истории Земли). По горизонтальной оси — время в млн лет назад. Толстой линией показан гиперболический тренд. Из статьи: Марков А. В., Коротаев А. В. Гиперболический рост разнообразия морской и континентальной биот фанерозоя и эволюция сообществ. 2008. //Журнал общей биологии. 2008. № 3. 

Наследственный материал прокариот (обычно это единственная кольцевая молекула ДНК — кольцевая хромосома) находится прямо в цитоплазме, то есть, образно говоря, в бурлящем биохимическом котле, где происходит обмен веществ и осуществляются тысячи химических реакций. В такой неспокойной обстановке очень трудно развить сложные и эффективные молекулярные механизмы регуляции работы генов. У эукариот функционирование генома регулируется сотнями и тысячами специализированных белков, а также особыми регуляторными РНК и другими молекулами. Весь этот управляющий аппарат находится в ядре клетки, и ядерная оболочка надежно защищает его от бурной биохимической деятельности цитоплазмы. Тонкая регуляция работы генов обеспечила эукариотам качественно иной уровень пластичности. Самое главное, она позволила клетке радикально менять свои свойства, структуру и облик, не изменяя при этом сам геном, а только усиливая или ослабляя работу разных генов. Именно эта пластичность позволила эукариотам в конце концов стать многоклеточными в строгом смысле этого слова. Ведь в настоящем многоклеточном организме не просто много клеток, а много разных типов клеток (покровные, мышечные, нервные, половые и т. д.) Однако геном у них у всех один и тот же!

Ученые из Фонда прикладной молекулярной эволюции, факультета биохимии и молекулярной биологии Флоридского университета и компании "ДНК 2.0м (DNA 2.0 lnс) провели многоступенчатое исследование, в результате которого удалось получить весьма правдоподобную реконструкцию температуры земной поверхности в архейские и протерозойские времена, то есть 3,5-0,5 млрд лет назад. 

Ученые подошли к проблеме с совершенно новой и неожиданной стороны. Их идея состояла в том, чтобы восстановить белки древнейших бактерий и проверить, к каким температурам эти белки лучше всего приспособлены — благо современная молекулярная биология уже способна выполнить такие удивительные маневры, как реконструирование исчезнувших белков. Тогда диапазон температур, в которых реконструированные белки будут устойчивы, как раз и покажет температурные условия, к которым были приспособлены бактерии. 

Выяснилось, что, чем раньше разошлись эволюционные ветви, то есть чем раньше жил общий предок соответствующей группы бактерий, тем более термостойким был его фактор элонгации. Самые древние общие предки, жившие в раннеархейские времена (3,5 млрд лет назад), были приспособлены к температуре около 60-70°С. Самые молодые, жившие в конце протерозоя (550 млн лет назад), предпочитали гораздо более прохладный климат — 37-35°С.

Это означает, что на заре земной жизни бактерии жили примерно в таких же условиях, какие сейчас существуют в горячих источниках, если к этому прибавить ультрафиолет и отнять кислород (пока в атмосфере не было кислорода, не было и озонового слоя, задерживающего ультрафиолетовое излучение).

Что касается цианобактерий, то они, как выяснилось, изначально жили при температуре около 64°С. Примерно к таким же температурам приспособлены и современные цианоактериальные маты, живущие в горячих источниках. Общий предок всех митохондрий, судя по свойствам воскрешенных белков, жил при температуре 51-53°С; общий предок всех бактерий — вообще при 64,8-73,3°С.

Самое главное, что полученные результаты почти полностью совпали с теми графиками, которые были получены ранее по изотопам кислорода и кремния. Совпадение результатов, полученных различными методами и на основе различных данных, всегда обнадеживает — это, пожалуй, единственный критерий правдоподобия подобных реконструкций. 

В настоящее время в научной литературе обсуждается два или три десятка возможных сценариев превращения сообщества прокариот в эукариотическую клетку Они разнятся в деталях, но имеют много общего в целом. Общепризнанными считаются следующие факты.

1. Митохондрии (органеллы эукариотической клетки, ответственные за кислородное дыхание) являются прямыми потомками прокариот из группы альфапротеобактерий. 

2. Пластиды (органеллы растительной клетки, отвечающие за фотосинтез) являются потомками цианобактерий.

3. Что касается "всего остального", то есть цитоплазмы эукариотической клетки и ее ядра, то здесь наблюдается причудливое смешение признаков архей и некоторых групп бактерий, а также уникальных черт, свойственных только эукариотам. 

Митохондрии — органеллы, обеспечивающие энергией клетки всех животных и растений. Они размножаются делением, как бактерии, и не могут образовываться de novo, то есть "с нуля". Митохондрии унаследовали от своих предков-бактерий маленькую кольцевую хромосому, содержащую, правда, гораздо меньше генов, чем у любой бактерии. Геном митохондрии кодирует лишь малую часть белков, необходимых для жизни, нормального функционирования и размножения самой митохондрии. Все недостающие белки поступают в митохондрию извне — из цитоплазмы клетки, а кодирующие их гены находятся в клеточном ядре.

Митохондрии размножаются исключительно бесполым путем ("клонируются") и передаются только по материнской линии. Поэтому все потомки одной женской особи имеют одинаковые митохондриальные геномы, идентичные материнскому. Очевидно, это не очень "здоровый" способ передачи наследственной информации, практически исключающий возможность прогрессивной эволюции генов, оставшихся в митохондриях, при том что скорость накопления мутаций в митохондриальной хромосоме намного выше, чем в ядерных. 

После приобретения митохондрий и пластид эукариоты вовсе не утратили способности к заглатыванию и "приручению" бактерий. Этот процесс продолжается и по сей день. Многие одноклеточные эукариоты (амебы, инфузории и другие) прямо-таки нашпигованы всевозможными симбиотическими прокариотами. Например, инфузории, обитающие в рубце жвачных, и жгутиконосцы, населяющие кишечник термитов, содержат в своей цитоплазме симбиотических бактерий, помогающих им переваривать клетчатку (целлюлозу). Такие симбиотические системы напоминают матрешку: в корове — инфузории, в инфузориях — бактерии. Зачем корова так тщательно пережевывает траву? Очень просто: кусочки травы должны стать достаточно маленькими, чтобы их могли проглотить симбиотические инфузории. Но и инфузория сама не может переварить целлюлозу и перепоручает это непростое дело своим собственным симбионтам — бактериям. 

По имеющимся оценкам, в кишечнике взрослого человека присутствует более 1 кг микроорганизмов, относящихся к сотням различных видов. В точности их видовой состав неизвестен. Микробиологи знают "в лицо" лишь несколько десятков типичных представителей, которых можно вырастить на искусственных средах.

в геноме человека свыше 3 млрд пар нуклеотидов, в геноме одной бактерии обычно 2-5 млн п.н. 

Метагеномный анализ применяется в тех случаях, когда требуется выяснить, какие микроорганизмы присутствуют в пробе. Суть метода в тотальном выделении из образца (например, из морской воды, почвы, тканей какого-нибудь животного или из содержимого кишечника) всех молекул ДНК, какие попадутся. ДНК секвенируют (определяют последовательности нуклеотидов) и по этим последовательностям выясняют, какие существа присутствуют в пробе. 

Генетические базы данных сегодня уже достаточно представительны, чтобы по набору выделенных из пробы генов можно было определить, какие организмы присутствуют в пробе, даже если эти организмы до сих пор не были известны науке. Сравнивая найденные гены с известными, можно выяснить не только чьими родственниками являются эти существа, но и как они живут и чем дышат.

По прикидкам, в кишечнике человека около 300 видов микробов.

Выход растений на сушу — результат симбиоза. Первые наземные растения появились в конце силурийского периода (более 400 млн лет назад). Недавно палеонтологи обнаружили, что уже самые первые наземные растения жили в симбиозе с грибами: у них была самая настоящая микориза. У этих растений еще не было настоящих корней — вместо них имелись так называемые ризоиды, не способные самостоятельно всасывать что-либо из почвы и служившие только для закрепления в грунте, а также, как теперь выяснилось, для обеспечения симбиоза с почвенными грибами. По- видимому, без этого симбиоза растения вообще не смогли бы выйти на сушу. Симбиоз растений с азотфиксирующими бактериями возник позже, причем для этого растениям оказалось достаточно лишь немного изменить те генетические системы, которые сложились у них ранее для взаимодействия с микоризными грибами. 

Способность тлей приспосабливаться к колебаниям температуры зависит от симбиотических бактерий. Тли питаются исключительно соками растений. Жить на этой скудной диете им позволяет удачный симбиоз с бактериями Buchnera. Симбионты получают от хозяев кров и пропитание, а в обмен синтезируют для них аминокислоты, витамины и другие вещества, напрочь отсутствующие в той чуть сладенькой водичке, которая составляет единственную пищу тлей.

Гены одних организмов успешно работают в клетках других. Благодаря этому, например, диабетики сегодня обеспечены инсулином — человеческим белком, произведенным бактериями, которым пересадили человеческий ген.

Адаптация бактерий к антибиотикам – эволюционный процесс «на наших глазах».

Изменчивость живых организмов, относящихся к одному и тому же виду, связана с тем, что многие гены в популяции существуют в виде нескольких вариантов (их называют аллельными вариантами, или аллелями). Набор генов у каждого представителя данного вида один и тот же, а вот комбинации аллелей у всех разные.

Интересное исследование провели недавно ученые из Института биологии развития им. Макса Планка (Тюбинген, Германия), которым удалось наглядно продемонстрировать, что одна-единственная мутация может породить способность к сложному коллективному поведению и радикально изменить взаимоотношения между организмами в сообществе

Работа проводилась на почвенной бактерии Myxococcus xanthus, относящейся к группе миксобактерий. Для этих прокариотических организмов характерно сложное коллективное поведение. Например, они иногда собираются в большие скопления и устраивают коллективную "охоту" на других микробов. "Охотники" выделяют токсины, убивающие "добычу", а затем всасывают органические вещества, высвободившиеся при распаде погибших клеток.     

Как и другие миксобактерии, Myxococcus при недостатке пищи образует плодовые тела, в которых часть бактерий превращается в споры. В виде спор микробы могут пережить голодные времена. Плодовое тело "собирается" из огромного множества индивидуальных бактериальных клеток. Создание такой крупной и сложной многоклеточной структуры требует слаженных действий миллионов отдельных бактерий, из которых лишь малая часть получает прямую выгоду, а все остальные жертвуют собой ради общего блага. Дело в том, что лишь очень немногие из участников коллективного действа смогут превратиться в споры и передать свои гены следующим поколениям. Все остальные выступают в роли "стройматериала", обреченного умереть, не оставив потомства.

Биологи давно заметили эту общую тенденцию: чем сложнее организм, тем быстрее он эволюционирует по пути дальнейшего усложнения. Причины этого до сих пор не вполне ясны.

Любопытно, что в некоторых случаях регуляторные контуры могут в течение миллионов лет сохранять способность адекватно реагировать на изменения положения тех "переключателей", которые давным-давно "заржавели" или вовсе исчезли. Современные методы иногда позволяют "воскресить" отмерший переключатель, и тогда появляется возможность наглядно убедиться в том, что система по-прежнему в рабочем состоянии. Таким способом, например, удалось вырастить зачатки зубов у куриного эмбриона, воздействовав на ткани челюсти соответствующими регуляторными веществами, взятыми у других животных. Предки курицы утратили зубы десятки миллионов лет назад, но многие компоненты регуляторного контура, необходимого для роста зубов, сохранились! Почему они не рассыпались под грузом случайных мутаций? Дело в том, что у животных важнейшие блоки регуляторных каскадов являются многофункциональными, то есть входят в разных комбинациях в состав множества регуляторных контуров.

Поэтому отбор оберегает эти блоки, отсеивая мутации, ведущие к их повреждению. Еще один пример "воскрешения отмершего переключателя" мы рассмотрим в главе "Животные" (см. сюжет "Разгадан механизм регенерации конечностей"): активировав один-единственный регуляторный ген, ученым удалось вернуть куриному эмбриону способность к регенерации конечности, давным-давно утраченную предками птиц.

Аксолотль — земноводное, сохраняющее способность к восстановлению утраченных конечностей в течение всей жизни. Это сделало его излюбленным объектом биологов, изучающих механизмы регенерации. 

Я: тогда теоретически возможен путь к регенерации ткани у человека.

Американские ученые путем искусственного отбора вывели гусениц, цвет которых дискретно меняется в зависимости от температуры: в тепле развиваются зеленые гусеницы, на холоде — черные. 

Многие далекие от генетики люди полагают, что в генах "записано" строение организма (генотип определяет фенотип). Это не совсем так. В действительности генотип определяет не фенотип как таковой, а норму реакции — определенный спектр возможностей развития. Какая из этих возможностей будет реализована, зависит уже не от генов, а от условий, в которых будет происходить развитие организма.

Обычно эти предусмотренные генотипом допустимые варианты фенотипа образуют непрерывный, плавный ряд, но иногда они бывают дискретны. В таком случае говорят о явлении полифенизма. Это значит, что при одном и том же генотипе в зависимости от условий будет реализован один из нескольких дискретных вариантов фенотипа. Например, из муравьиного яйца с одним и тем же генотипом могут развиться и рабочий муравей, и крылатая самка — в зависимости оттого, как будут кормить личинку. Другие примеры полифенизма — одиночная и стайная формы перелетной саранчи, бескрылая и крылатая формы тлей.

Полифенизм — одна из форм адаптации к переменчивым условиям среды. Известно, что пороговые значения внешних факторов, вызывающие "переключение" развития на альтернативный путь, могут меняться под воздействием отбора. Однако сам механизм этого переключения пока мало изучен. 

Ход развития и строение взрослого многоклеточного животного "закодирован" в геноме примерно в той же степени и в том же смысле, в каком причудливые морозные узоры на стекле "закодированы" в структуре молекулы воды. В обоих случаях между наследственным кодом и его воплощением (генотипом и фенотипом) лежат сложнейшие, трудно поддающиеся изучению процессы самоорганизации. Эта аналогия помогает понять, почему генетики, даже имея полные тексты геномов многих видов, так медленно продвигаются к пониманию "генетических основ" сложных биологических объектов и явлений.

На сегодняшний день считается, что одноклеточные эукариоты переходили к многоклеточности более 20 раз, однако современные животные — результат лишь одного из этих событий. 

…несколько лет назад в водах Мексиканского залива, в глубоких бескислородных слоях, были обнаружены гигантские бактерии Thiomargarita. Их размер — от 0,1 до 0,75 мм, что для бактерий поистине рекордные показатели. 

…первые животные должны были представлять собой нечто вроде шарика (или лепешки) из двух типов клеток. Клетки наружного слоя несли жгутики и служили для движения. Внутри помещались клетки, похожие на амеб и выполняющие пищеварительную функцию. Примерно так устроены личинки низших животных — губок и кишечнополостных.

Человек унаследовал не менее 2/3 своих генов от общего с актинией предка; сама актиния — примерно столько же. Муха и круглый червь унаследовали от общего предка с актинией лишь 50% и 40% генов соответственно.

(НОХ-гены, регуляторы). Стало ясно, что, изменив всего лишь один ген или время его включения, можно трансформировать, дублировать, удалить или перенести в другое место сразу целый орган, сохранив при этом общий план строения. («загадка камбалы?)    

Кроме того, ученые получили новый мощный инструмент для эволюционных построений — семейство гомологичных (происходящих один от другого) генов, присутствующих у всех животных. Все гипотезы о происхождении и ранней эволюции животных теперь включают и этот пласт информации.

Нох-гены располагаются на одной или нескольких (до четырех) хромосомах, обычно тесными группами (кластерами), внутри которых сохраняется более или менее строгий порядок: "головные" гены впереди, "хвостовые" — сзади. У более примитивных представителей многоклеточных, таких как гребневики (Ctenophora) и кишечнополостные (Cnidaria), этих эмбриональных регуляторных генов только четыре, у млекопитающих их уже 48.

(До сих пор не до конца понятно, что управляет включением самих НОХ-генов. Между Нох-генами расположены участки ДНК, прежде считавшиеся бессмысленными. В действительности, как оказалось, с них считываются короткие молекулы регуляторных РНК. Некоторые из них усиливают или ослабляют экспрессию (работу) самих Нох-генов, некоторые косвенно влияют на работу других транскрипционных факторов. В экспериментах показано, что эти микроРНК могут регулировать как соседний, так и отдаленный Hох-ген.) 

"Главный секрет" животных. На интуитивном уровне мы привыкли относиться к царству животных как к чему-то огромному и чуть ли не бесконечно разнообразному. Но в последнее время все больше появляется фактов, которые показывают, что в действительности животные (Metazoa) представляют собой весьма специфическую, компактную и генетически однородную группу организмов. Прочтенный геном актинии — яркое тому свидетельство.

По-видимому, "самый большой секрет" животных, та генеральная идея, на которой основаны их строение и эволюция, заключается в особой технологии построения сложного организма из множества изначально одинаковых модулей — клеток. Суть технологии в том, что благодаря деятельности ряда ключевых генов — регуляторов развития (в том числе Нох-генов) между делящимися клетками складывается сложная система взаимоотношений, клетки обмениваются сигналами, градиенты концентраций регуляторных веществ задают симметрию и план строения развивающегося организма, и все эти факторы вместе направляют процесс самоорганизации, самосборки сложного многоклеточного существа из генетически идентичных (то есть изначально одинаково "запрограммированных") клеток.

 Зачем динозаврам перья? Перья не сразу стали использоваться для полета. Сначала они, по всей видимости, служили для термоизоляции и были похожи на пух современных птиц. Потом они пригодились для брачных демонстраций. В октябре 2008 года в Китае нашли остатки пушистого нелетающего динозаврика размером с голубя, у которого на хвосте было четыре длиннейших пера, примерно таких же, как у самцов современных райских птиц. Такие перья могли использоваться только для привлечения самок — больше они ни на что не годны. Позже перья могли пригодиться как средство планирования при прыжках с ветки на ветку (у древесных динозавров дромеозаврид) либо для ускорения бега — у быстро бегающих наземных форм. 

Недавно откопали совсем уж невероятных "четырехкрылых" динозавров — микрорапторов, которые, скорее всего, умели неплохо летать. Крупные перья, явно предназначенные для полета, были у них не только на передних конечностях, но и на задних!

До недавнего времени считалось, что все "оптичившиеся" динозавры были сравнительно мелкими. Однако в 2007 году в Китае был найден настоящий птицеподобный гигант, живший в позднемеловую эпоху и весивший около полутора тонн.

 у археоптерикса на сегодняшний день не осталось ни одного "птичьего" признака, который не был бы найден у тех или иных динозавров. Раньше такими признаками считались перья, крючковидные отростки на ребрах и вилочка (сросшиеся ключицы). Зато многие из тех признаков, которые есть у настоящих (веерохвостых) птиц, но отсутствуют у динозавров, не обнаружены ни у археоптерикса, ни у его ящерохвостых родственников. 

Лучшим из обнаруженных до сих пор кандидатов на роль птичьего предка среди текодонтов является протоавис, найденный в позднетриасовых отложениях США в 1983 г. Хотя протоавис был наземным животным и не умел летать, у него имеются важнейшие птичьи признаки, которых нет ни у археоптерикса, ни у энанциорнисов, ни у пернатых динозавров.

Как мы познаем – круто!

Кто бы мог подумать, что в серьезных научных журналах начнут появляться статьи об эволюции геномов динозавров — животных, в чьих ископаемых костях за давностью лет никакой ДНК попросту не осталось. Тем не менее это произошло.

Изобретательность исследователей, выполнивших эту работу, вызывает чувство глубокого восхищения.

Ученые воспользовались тем обстоятельством, что в ископаемых костях, если они достаточно хорошо сохранились, на срезах бывают видны маленькие полости, в которых при жизни животного помещались клетки костной ткани — остеоциты. Известно, что размер генома в некоторых группах живых существ положительно коррелирует с размером клеток. Справедливо ли это для остеоцитов позвоночных? Авторы изучили срезы костей 26 видов современных тетрапод (то есть четвероногих; к ним относятся амфибии, рептилии, птицы и млекопитающие) и обнаружили линейную зависимость между размером генома и средним объемом остеоцита. Найденная зависимость позволила ученым с приемлемой точностью оценивать размеры геномов ископаемых видов. 

Вопрос, который давно волнует ученых: когда и почему у предков современных птиц произошло радикальное уменьшение генома? Дело в том, что птичьи геномы значительно меньше по размеру, чем у остальных тетрапод. Размер генома современных птиц — от 0,97 до 2,16 млрд пар нуклеотидов, в среднем 1,45. Для сравнения — у жабы 6,00, у крокодила 3,21, у коровы 3,7, у кошки 2,9, у мыши 3,3, у человека 3,5 (НЭТ? – размер генома)

Что такое "скорость эволюции"? Необходимо помнить, что под "скоростью эволюции" в зависимости от контекста могут подразумеваться два совершенно разных показателя. Одно дело — скорость образования разнообразных причудливых специализированных форм, совсем другое — скорость прогрессивных преобразований, связанных с выработкой новых адаптаций широкого профиля и ростом сложности организма. На маленьких изолированных клочках суши выше только первая из этих скоростей, тогда как вторая, наоборот, выше на больших материках с разнообразными условиями и сложными насыщенными экосистемами.

Набор экологических "ролей" (ниш) в разных сообществах в целом сходен. Например, если это степь, прерия или саванна, то там должна быть, во-первых, трава, во-вторых — крупные травоядные звери (копытные или их аналоги), в третьих — хищники, охотящиеся на этих копытных, в четвертых — жуки-навозники и другие беспозвоночные, перерабатывающие навоз травоядных, и т. д. Все эти ниши обязательно должны быть кем-то заполнены, иначе весь комплекс развалится. Попробуйте лишить экосистему одного из блоков, например жуков-навозников, — немедленно начнется экологический кризис. Нечто подобное наблюдалось в Австралии, где завезенные европейскими фермерами овцы стали быстро приводить пастбища в негодность из-за отсутствия в местной фауне эффективных переработчиков навоза. Пришлось срочно завозить жуков-навозников с "большой земли".

Наконец, многие параллелизмы могут иметь довольно простые генетические объяснения. Индивидуальное развитие животных и растений контролируется сравнительно небольшим числом ключевых генов-регуляторов. Если, например, в двух эволюционных линиях независимо "сломается" какой-то регуляторный ген, в этом едва ли можно усмотреть что-то удивительное или невероятное. Однако внешнее проявление этой ошибки может показаться в высшей степени удивительным: ведь мы увидим весьма сложные и, главное, одинаковые изменения в двух разных группах организмов.

Надо сказать, что находки древних мезозойских млекопитающих в последнее время необычайно участились. Еще пару десятилетий назад считалось, что мезозойские млекопитающие были малочисленной, второстепенной группой мелких крысоподобных зверьков, влачивших жалкое существование в тени господствовавших в то время динозавров. Благодаря находкам последних лет, значительная часть которых сделана китайскими палеонтологами, стало известно, что древние звери были весьма многочисленны, разнообразны и могли достигать размеров лисы или барсука.

Новая палеонтологическая находка проливает свет на раннюю эволюцию млекопитающих. Китайские палеонтологи в очередной раз удивили научный мир необычной находкой. На этот раз они откопали очень хорошо сохранившийся скелет неизвестного ранее примитивного млекопитающего из группы триконодонтов, жившего около 125 млн лет назад (в раннемеловую эпоху).

Новооткрытый мезозойский зверек Yanoconodon allini был как раз таким, каким "положено" быть мезозойскому зверю — маленьким и невзрачным. Интересен он прежде всего тем, что у него очень хорошо сохранились косточки среднего уха (молоточек и наковальня), причем сохранились они не по отдельности, а в своем естественном положении, сочлененные с другими костями.    

Строение этих косточек является одним из главных отличительных признаков млекопитающих. У предков зверей — зверозубых рептилий — была только одна слуховая косточка (стремечко), а молоточек и наковальня составляли единое целое с нижней челюстью. То же самое наблюдается и у самых примитивных древних млекопитающих. У современных млекопитающих в ходе эмбрионального развития эти косточки сначала, как и у далеких предков, прилегают к нижней челюсти, а затем отделяются от нее.

Отделение происходит в два этапа: сначала слуховые косточки отделяются от боковой поверхности нижней челюсти, но остаются связаны с ней спереди посредством меккелева хряща (этот хрящ, кстати, представляет собой остаток первичной, изначальной нижней челюсти позвоночных; у акул вся нижняя челюсть образована меккелевым хрящом). На втором этапе исчезает и это переднее соединение: меккелев хрящ у взрослых млекопитающих рассасывается.

На основе этих фактов более 30 лет назад была выдвинута гипотеза, согласно которой в эволюции среднего уха млекопитающих имелась промежуточная стадия — примерно такая же, как в эмбриональном развитии современных зверей (Allin Е. F. Evolution of the mammalian middle ear.  // J. Morphol.1975. 147, 403-438.). Яноконодон блестяще подтвердил эту догадку. Именно поэтому первооткрыватели присвоили ему видовое название allini — в честь Эдгара Аллина (Edgar Allin), автора подтвердившейся гипотезы. Молоточек и наковальня у яноконодона уже отделены от нижней челюсти с боков, но еще прикреплены к ней спереди посредством окостеневшего меккелева хряща.

Строение скелета яноконодона еще раз подтвердило, что в ранней эволюции млекопитающих многие прогрессивные признаки появлялись параллельно и независимо в разных линиях. Например, у яноконодона имеются ребра на поясничных позвонках (это примитивный признак), тогда как у некоторых близких форм поясничные ребра отсутствуют. Сравнительно-анатомический и филогенетический (эволюционный) анализ мезозойских млекопитающих показывает, что поясничные ребра многократно исчезали и вновь появлялись в разных эволюционных линиях.

Важнейший для всей человеческой цивилизации пример параллельной эволюции дают культурные злаки. Ведь все множество одомашненных видов и сортов злаков, от кукурузы до пшеницы, должны были обрести совершенно определенный набор хозяйственных признаков. Это скороспелость, высокая продуктивность, неопадающие семена, голозерность и др. Скороспелость, то есть превращение многолетников или двухлетников в однолетники, необходима, так как урожай желательно иметь каждый год, а не через два года на третий. Неопадающие семена и неломкий колос нужны для предотвращения опадения на землю спелых семян до сбора их земледельцем. Голозерность сильно облегчает и ускоряет процесс обмолота. И все эти признаки культурные растения приобрели в результате неосознанного искусственного отбора независимо друг от друга. Такая параллельная эволюция, по-видимому, сильно облегчалась тем, что формирование многих хозяйственных признаков контролируется единичными регуляторными генами. И если этот единственный регуляторный ген отключить или изменить его работу мутацией, то сразу получится нужный признак.

Назад к разделу